

FSAN/ELEG815: Statistical Learning

Gonzalo R. Arce

Department of Electrical and Computer Engineering University of Delaware

I: Review of Probability

Outline of the Course

- 1. Review of Probability and Stationary processes
- 2. Eigen Analysis, Singular Value Decomposition (SVD) Principal Component Analysis (PCA) and Matrix Completition
- 3. The Learning Problem
- 4. Training vs Testing
- 5. The Linear Model
- 6. Overfitting and Regularization (Ridge Regression)
- 7. Lasso Regression
- 8. Suport Vector Machines (SVM)
- 9. Neural Networks
- 10. Convolutional Neural Networks

LLE

Regression

Random Variables

Definition

For a space S, the subsets, or events of S, have associated probabilities.

- ▶ To every event δ , we assign a number $x(\delta)$, which is called a R.V.
- \triangleright The distribution function of x is

$$\Pr\{x \le x_0\} = F_x(x_0) \quad -\infty < x_0 < \infty$$

Properties:

- 1. $F(+\infty) = 1$, $F(-\infty) = 0$
- 2. F(x) is continuous from the right

$$F(x^+) = F(x)$$

3. $\Pr\{x_1 < x \le x_2\} = F(x_2) - F(x_1)$

Example

Fair toss of two coins: H=heads, T=Tails

Define numerical assignments:

$Events(\delta)$	Prob.	$X(\delta)$	$Y(\delta)$
HH	1/4	1	-100
HT	1/4	2	-100
TH	1/4	3	-100
TT	1/4	4	500

This assignments yield different distribution functions

$$F_x(2) = \Pr\{HH, HT\}$$

$$F_y(2) = \Pr\{HH, HT, TH\}$$

How do we attain an intuitive interpretation of the distribution function?

Distribution Plots

Note properties hold:

- 1. $F(+\infty) = 1$, $F(-\infty) = 0$
- 2. F(x) is continuous from the right

$$F(x^+) = F(x)$$

3.
$$\Pr\{x_1 < x \le x_2\} = F(x_2) - F(x_1)$$

Definition

The probability density function is defined as,

$$f(x) = \frac{dF(x)}{dx}$$
 or
$$F(x) = \int_{-\infty}^{x} f(x) dx$$

Thus
$$F(\infty) = 1 \Rightarrow \int_{-\infty}^{\infty} f(x) dx = 1$$

Types of distributions:

- ► Continuous: $Pr\{x = x_0\} = 0 \quad \forall x_0$
- ▶ Discrete: $F(x_i) F(x_i^-) = \Pr\{x = x_i\} = P_i$
 - ▶ In which case $f(x) = \sum_i P_i \delta(x x_i)$
- Mixed: discontinuous but not discrete

Distribution examples

Uniform: $x \sim U(a, b)$ a < b

$$f(x) = \begin{cases} \frac{1}{b-a} & x \in [a,b] \\ 0 & \text{else} \end{cases}$$

Gaussian: $x \sim N(\mu, \sigma)$

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Gaussian Distribution Example

Example

Consider the Normal (Gaussian) distribution PDF and CDF for $\mu=0,\sigma^2=0.2,1.0,5.0$ and $\mu=-2,\sigma^2=0.5$

Binomial:
$$x \sim B(p,q)$$
 $p+q=1$

Example

Toss a coin n times. What is the probability of getting k heads?

For p+q=1, where q is probability of a tail, and p is the probability of a head:

$$\begin{aligned} \Pr\{x = k\} &= \binom{n}{k} p^k q^{n-k} \quad \left[\mathsf{NOTE:} \binom{n}{k} = \frac{n!}{(n-k)!k!} \right] \\ \Rightarrow f(x) &= \sum_{k=0}^n \binom{n}{k} p^k q^{n-k} \delta(x-k) \\ \Rightarrow F(x) &= \sum_{k=0}^m \binom{n}{k} p^k q^{n-k} \quad m \leq x < m+1 \end{aligned}$$

Binomial Distribution Example I

Example

Toss a coin n times. What is the probability of getting k heads? For $n=9, p=q=\frac{1}{2}$ (fair coin)

Binomial Distribution Example II

Example

Toss a coin n times. What is the probability of getting k heads? For n=20, p=0.5, 0.7 and n=40, p=0.5.

Conditional Distributions

Definition

The conditional distribution of x given event "M" has occurred is

$$\begin{array}{lcl} F_x(x_0|M) & = & \Pr\{x \leq x_0|M\} \\ & = & \frac{\Pr\{x \leq x_0,M\}}{\Pr\{M\}} \end{array}$$

Example

Suppose $M = \{x \leq a\}$, then

$$F_x(x_0|M) = \frac{\Pr\{x \le x_0, M\}}{\Pr\{x \le a\}}$$

If $x_0 \ge a$, what happens?

Special Cases

Special Case: $x_0 \ge a$

$$\Pr\{x \le x_0, x \le a\} = \Pr\{x \le a\}$$

$$\Rightarrow F_x(x_0|M) = \frac{\Pr\{x \le x_0, M\}}{\Pr\{x \le a\}} = \frac{\Pr\{x \le a\}}{\Pr\{x \le a\}} = 1$$

Special Case: $x_0 \le a$

$$\Rightarrow F_x(x_0|M) = \frac{\Pr\{x \le x_0, M\}}{\Pr\{x \le a\}} = \frac{\Pr\{x \le x_0\}}{\Pr\{x \le a\}}$$
$$= \frac{F_x(x_0)}{F_x(a)}$$

Conditional Distribution Example

Example Suppose

What does $F_x(x|M)$ look like? Note $M = \{x \le a\}$.

$$\Rightarrow F_x(x_0|M) = \begin{cases} \frac{F_x(x_0)}{F_x(a)} & x \le a \\ 1 & a \le x \end{cases}$$

- ▶ Distribution properties hold for conditional cases:
 - Limiting cases: $F(\infty|M) = 1$ and $F(-\infty|M) = 0$
 - Probability range: $\Pr\{x_0 \le x \le x_1 | M\} = F(x_1 | M) F(x_0 | M)$
 - ► Density-distribution relations:

$$f(x|M) = \frac{\partial F(x|M)}{\partial x}$$

$$F(x_0|M) = \int_{-\infty}^{x_0} f(x|M)dx$$

Example (Fair Coin Toss)

Toss a fair coin 4 times. Let x be the number of heads. Determine $\Pr\{x=k\}$.

Recall

$$\Pr\{x=k\} = \binom{n}{k} p^k q^{n-k}$$

In this case

$$\Pr\{x = k\} = \binom{4}{k} \left(\frac{1}{2}\right)^4$$

$$\Pr\{x = 0\} = \Pr\{x = 4\} = \frac{1}{16}$$

$$\Pr\{x = 1\} = \Pr\{x = 3\} = \frac{1}{4}$$

$$\Pr\{x = 2\} = \frac{3}{8}$$

Density and Distribution Plots for Fair Coin (n = 4) Ex.

What type of distribution is this? Discrete. Thus,

$$F(x_i) - F(x_i^-) = \Pr\{x = x_i\} = P_i$$

$$F(x) = \int_{-\infty}^x f(x) dx = \int_{-\infty}^x \sum_i P_i \delta(x - x_i) dx$$

Conditional Case

Example (Conditional Fair Coin Toss)

Toss a fair coin 4 times. Let x be the number of heads. Suppose $M=[{\rm at\ least\ one\ flip\ produces\ a\ head}].$ Determine ${\rm Pr}\{x=k|M\}.$ Recall,

$$\Pr\{x = k | M\} = \frac{\Pr\{x = k, M\}}{\Pr\{M\}}$$

Thus first determine $Pr\{M\}$

$$\begin{split} \Pr\{M\} &= 1 - \Pr\{\text{No heads}\} \\ &= 1 - \frac{1}{16} \\ &= \frac{15}{16} \end{split}$$

Next determine $Pr\{x = k | M\}$ for the individual cases, k = 0, 1, 2, 3, 4

$$\begin{array}{lll} \Pr\{x=0|M\} & = & \frac{\Pr\{x=0,M\}}{\Pr\{M\}} = 0 \\ \\ \Pr\{x=1|M\} & = & \frac{\Pr\{x=1,M\}}{\Pr\{M\}} \\ & = & \frac{\Pr\{x=1\}}{\Pr\{M\}} = \frac{1/4}{15/16} = \frac{4}{15} \\ \\ \Pr\{x=2|M\} & = & \frac{\Pr\{x=2\}}{\Pr\{M\}} = \frac{3/8}{15/16} = \frac{6}{15} \\ \\ \Pr\{x=3|M\} & = & \frac{4}{15} \\ \\ \Pr\{x=4|M\} & = & \frac{1}{15} \end{array}$$

Conditional and Unconditional Density Functions

Are they proper density functions?

Functions of a R.V.

Problem Statement

Let x and g(x) be RVs such that

$$y = g(x)$$

Question: How do we determine the distribution of y?

Note

$$\begin{array}{rcl} F_y(y_0) & = & \Pr\{y \le y_0\} \\ & = & \Pr\{g(x) \le y_0\} \\ & = & \Pr\{x \in R_{y_0}\} \end{array}$$

where

$$R_{y_0} = \{x : g(x) \le y_0\}$$

Question: If $y = g(x) = x^2$, what is R_{y_0} ?

Example

Let $y = g(x) = x^2$. Determine $F_y(y_0)$.

Note that

$$\begin{array}{rcl} F_y(y_0) & = & \Pr(y \leq y_0) \\ & = & \Pr(-\sqrt{y_0} \leq x \leq \sqrt{y_0}) \\ & = & F_x(\sqrt{y_0}) - F_x(-\sqrt{y_0}) \end{array}$$

Example

Let $x \sim N(\mu, \sigma)$ and

$$y = U(x) = \begin{cases} 1 & \text{if} \quad x > \mu \\ 0 & \text{if} \quad x \le \mu \end{cases}$$

Determine $f_y(y_0)$ and $F_y(y_0)$.

General Function of a Random Variable Case

Additional Notes

To determine the density of y = g(x) in terms of $f_x(x_0)$, look at g(x)

$$\begin{array}{lcl} f_y(y_0)dy_0 & = & \Pr(y_0 \leq y \leq y_0 + dy_0) \\ & = & \Pr(x_1 \leq x \leq x_1 + dx_1) + \Pr(x_2 + dx_2 \leq x \leq x_2) \\ & & + \Pr(x_3 \leq x \leq x_3 + dx_3) \end{array}$$

Additional Notes

$$f_y(y_0)dy_0 = \Pr(x_1 \le x \le x_1 + dx_1) + \Pr(x_2 + dx_2 \le x \le x_2)$$

$$+ \Pr(x_3 \le x \le x_3 + dx_3)$$

$$= f_x(x_1)dx_1 + f_x(x_2)|dx_2| + f_x(x_3)dx_3 \qquad (*)$$

Note that

$$dx_1 = \frac{dx_1}{dy_0}dy_0 = \frac{dy_0}{dy_0/dx_1} = \frac{dy_0}{g'(x_1)}$$

Similarly

$$dx_2 = \frac{dy_0}{g'(x_2)} \quad \text{and} \quad dx_3 = \frac{dy_0}{g'(x_3)}$$

Thus (*) becomes

$$f_y(y_0)dy_0 = \frac{f_x(x_1)}{g'(x_1)}dy_0 + \frac{f_x(x_2)}{|g'(x_2)|}dy_0 + \frac{f_x(x_3)}{g'(x_3)}dy_0$$

or

$$f_y(y_0) = \frac{f_x(x_1)}{g'(x_1)} + \frac{f_x(x_2)}{|g'(x_2)|} + \frac{f_x(x_3)}{g'(x_3)} + \frac{f_x(x_3)}{|g'(x_3)|} + \frac{f_x(x_3)}{$$

Function of a R.V. Distribution General Result

Set y = g(x) and let $x_1, x_2,...$ be the roots, i.e.,

$$y = g(x_1) = g(x_2) = \dots$$

Then

$$f_y(y) = \frac{f_x(x_1)}{|g'(x_1)|} + \frac{f_x(x_2)}{|g'(x_2)|} + \dots$$

Example

Suppose $x \sim U(-1,2)$ and $y = x^2$. Determine $f_y(y)$.

Note that

$$g(x) = x^2 \Rightarrow g'(x) = 2x$$

Consider special cases separately:

Case 1: $0 \le y \le 1$

$$y = x^2 \Rightarrow x = \pm \sqrt{y}$$

$$f_y(y) = \frac{f_x(x_1)}{|g'(x_1)|} + \frac{f_x(x_2)}{|g'(x_2)|}$$
$$= \frac{1/3}{|2\sqrt{y}|} + \frac{1/3}{|-2\sqrt{y}|} = \frac{1/3}{\sqrt{y}}$$

Case 2: $1 \le y \le 4$

$$y = x^2 \Rightarrow x = \sqrt{y}$$
 $f_y(y) = \frac{f_x(x_1)}{|g'(x_1)|} = \frac{1/3}{2\sqrt{y}} = \frac{1/6}{\sqrt{y}}$

Result: For $x \sim U(-1,2)$ and $y = x^2$

$$f_y(y) = \begin{cases} \frac{1/3}{\sqrt{y}} & 0 \le y \le 1\\ \frac{1/6}{\sqrt{y}} & 1 < y \le 4 \end{cases}$$

Example

Let $x \sim N(\mu, \sigma)$ and $y = e^x$. Determine $f_y(y)$.

Note $g(x) \ge 0$ and $g'(x) = e^x$

Also, there is a single root (inverse solution):

$$x = \ln(y)$$

Therefore,

$$f_y(y) = \frac{f_x(x)}{|g'(x)|} = \frac{f_x(x)}{e^x}$$

Expressing this in terms of y through substitution yields:

$$f_y(y) = \frac{f_x(\ln(y))}{e^{\ln(y)}} = \frac{f_x(\ln(y))}{y}$$

Note that x is Gaussian:

$$f_x(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

$$\Rightarrow f_y(y) = \frac{1}{\sqrt{2\pi}y\sigma} e^{-\frac{(\ln(y)-\mu)^2}{2\sigma^2}}, \quad \text{for } y > 0$$

Mean, Median and variance

Definitions

Mean
$$E\{x\}=\int_{-\infty}^{\infty}xf(x)dx$$
 Conditional Mean $E\{x|M\}=\int_{-\infty}^{\infty}xf(x|M)dx$

Example

Suppose $M = \{x \ge a\}$. Then

$$E\{x|M\} = \int_{-\infty}^{\infty} x f(x|M) dx$$
$$= \frac{\int_{a}^{\infty} x f(x) dx}{\int_{a}^{\infty} f(x) dx}$$

FSAN/ELEG815

For a function of a RV, y = g(x),

$$E\{y\} = \int_{-\infty}^{\infty} y f_y(y) dy = \int_{-\infty}^{\infty} g(x) f_x(x) dx$$

Example

Suppose g(x) is a step function: Determine $E\{g(x)\}$.

$$E\{g(x)\} = \int_{-\infty}^{\infty} g(x)f_x(x)dx = \int_{-\infty}^{x_0} f_x(x)dx = F_x(x_0)$$

Median

Definitions

$$\text{Median= m} \quad \int_{-\infty}^m f(x) dx \ = \ \int_m^\infty f(x) dx = \frac{1}{2}$$

$$\text{Median} \quad Pr\{x \leq m\} \ = \ Pr\{x \geq m\}$$

Example

Let
$$x \sim \lambda \exp^{-\lambda x} U(x)$$
. Then $m = \frac{\ln(2)}{\lambda}$

Definition (Variance)

Variance
$$\sigma^2 = \int_{-\infty}^{\infty} (x - \eta)^2 f(x) dx$$

where $\eta = E\{x\}$. Thus,

$$\sigma^2 = E\{(x - \eta)^2\} = E\{x^2\} - E^2\{x\}$$

Example

For $x \sim N(\eta, \sigma^2)$, determine the variance.

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\eta)^2}{2\sigma^2}}$$

Note: f(x) is symmetric about $x = \eta \Rightarrow E\{x\} = \eta$

Also

$$\int_{-\infty}^{\infty} f(x)dx = 1 \Rightarrow \int_{-\infty}^{\infty} e^{-\frac{(x-\eta)^2}{2\sigma^2}} dx = \sqrt{2\pi}\sigma$$

$$\int_{-\infty}^{\infty} e^{-\frac{(x-\eta)^2}{2\sigma^2}} dx = \sqrt{2\pi}\sigma$$

Differentiating w.r.t. σ :

$$\Rightarrow \int_{-\infty}^{\infty} \frac{(x-\eta)^2}{\sigma^3} e^{-\frac{(x-\eta)^2}{2\sigma^2}} dx = \sqrt{2\pi}$$

Rearranging yields

$$\int_{-\infty}^{\infty} (x - \eta)^2 \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x - \eta)^2}{2\sigma^2}} dx = \sigma^2$$

or

$$E\{(x-\eta)^2\} = \sigma^2$$

Bivariate Statistics

Given two RVs, x and y, the bivariate (joint) distribution is given by

$$F(x_0, y_0) = \Pr\{x \le x_0, y \le y_0\}$$

Properties:

$$F(-\infty,y) = F(x,-\infty) = 0$$

$$F(\infty,\infty)=1$$

$$ightharpoonup F_x(x) = F(x, \infty), \quad F_y(y) = F(\infty, y)$$

Special Cases

Case 1:
$$M = \{x_1 \le x \le x_2, y \le y_0\}$$

$$\Rightarrow \Pr\{M\} = F(x_2, y_0) - F(x_1, y_0)$$

Case 2:
$$M = \{x \le x_0, y_1 \le y \le y_2\}$$
 $\Rightarrow \Pr\{M\} = F(x_0, y_2) - F(x_0, y_1)$

Case 3:
$$M = \{x_1 \le x \le x_2, y_1 \le y \le y_2\}$$
 Then

and

$$\Pr\{M\} = F(x_2, y_2) - F(x_1, y_2) - F(x_2, y_1) + \underbrace{F(x_1, y_1)}_{\bot}$$

Added back because this region was subtracted twice

Definition (Joint Statistics)

$$f(x,y) = \frac{\partial^2 F(x,y)}{\partial x \partial y}$$

and

$$F(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f(\alpha,\beta) d\alpha d\beta$$

In general, for some region M, the joint statistics are

$$\Pr\{(x,y) \in M\} = \int \int_{M} f(x,y) dx dy$$

Marginal Statistics: $F_x(x) = F(x, \infty)$ and $F_y(y) = F(\infty, y)$

$$\Rightarrow f_x(x) = \int_{-\infty}^{\infty} f(x,y)dy$$
$$\Rightarrow f_y(y) = \int_{-\infty}^{\infty} f(x,y)dx$$

Independence

Definition (Independence)

Two RVs x and y are statistically independent if for arbitrary events (regions) $x \in A$ and $y \in B$,

$$\Pr\{x \in A, y \in B\} = \Pr\{x \in A\} \Pr\{y \in B\}$$

Letting $A = \{x \le x_0\}$ and $B = \{y \le y_0\}$, we see x and y are independent iff

$$F_{x,y}(x,y) = F_x(x)F_y(y)$$

and by differentiation

$$f_{x,y}(x,y) = f_x(x)f_y(y)$$

Joint Moments

For RVs x and y and function z = g(x,y)

$$E\{z\} = \int_{-\infty}^{\infty} z f_z(z) dz$$

$$E\{g(x,y)\} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y) f(x,y) dx dy$$

Definition (Covariance)

For RVs x and y,

$$C_{xy} = \operatorname{Cov}(x, y)$$

$$= E[(x - \eta_x)(y - \eta_y)]$$

$$= E[xy] - \eta_x E[y] - \eta_y E[x] + \eta_x \eta_y$$

$$= E[xy] - \eta_x \eta_y$$

Definition (Correlation Coefficient)

The correlation coefficient is given by

$$r = \frac{C_{xy}}{\sigma_x \sigma_y}$$

Note that

$$0 \leq E\{[a(x-\eta_x)+(y-\eta_y)]^2\}$$

= $E\{(x-\eta_x)^2\}a^2+2E\{(x-\eta_x)(y-\eta_y)\}a+E\{(y-\eta_y)^2\}$
= $\sigma_x^2a^2+2C_{xy}a+\sigma_y^2$

This is a positive quadratic function of a

⇒ Roots are imaginary and discriminant is non-positive

$$\begin{array}{rcl} \sqrt{4C_{xy}^2 - 4\sigma_x^2\sigma_y^2} & \rightarrow & \text{imaginary} \\ \Rightarrow 4C_{xy}^2 - 4\sigma_x^2\sigma_y^2 & \leq & 0 \\ \Rightarrow C_{xy}^2 & \leq & \sigma_x^2\sigma_y^2 \end{array}$$

Thus,

$$|C_{xy}| \le \sigma_x \sigma_y$$
 and $|r| = \frac{|C_{xy}|}{\sigma_x \sigma_y} \le 1$

Definition (Uncorrelated)

Two RVs are uncorrelated if their covariance is zero

$$C_{xy} = 0$$

$$\Rightarrow r = \frac{C_{xy}}{\sigma_x \sigma_y} = 0$$

$$= \frac{E\{xy\} - E\{x\}E\{y\}}{\sigma_x \sigma_y} = 0$$

$$\Rightarrow E\{xy\} = E\{x\}E\{y\}$$

Thus

$$C_{xy}=0 \Leftrightarrow E\{xy\}=E\{x\}E\{y\}$$

Result

If x and y are independent, then

$$E\{xy\} = E\{x\}E\{y\}$$

and x and y are uncorrelated

Note: Converse is not true (in general)

- ► Converse only holds for Gaussian *RV*s
- Independence is a stronger condition than uncorrelated

Definition (Orthogonality)

Two RVs are orthogonal if

$$E\{xy\} = 0$$

Note: If x and y are correlated, they are not orthogonal

Example

Consider the correlation between two RVs, x and y, with samples shown in a scatter plot

Sequences and Vectors of Random Variables

Definition (Vector Distribution)

Let $\{x\}$ be a sequence of RVs. Take N samples to form the random vector

$$\mathbf{x} = [x_1, x_2, \dots, x_N]^T$$

Then the vector distribution function is

$$F_{\mathbf{x}}(\mathbf{x}^0) = \Pr\{x_1 \le x_1^0, x_2 \le x_2^0, \dots, x_N \le x_N^0\}$$

 $\stackrel{\triangle}{=} \Pr\{\mathbf{x} \le \mathbf{x}^0\}$

$$\begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_N \end{bmatrix} = \begin{bmatrix} x_{r1} \\ x_{r2} \\ \vdots \\ x_{rN} \end{bmatrix}$$

The distribution in the complex case is defined as

$$F_{\mathbf{x}}(\mathbf{x}^0) = \Pr{\{\mathbf{x}_r \leq \mathbf{x}_r^0, \mathbf{x}_i \leq \mathbf{x}_i^0\}}$$

$$\stackrel{\triangle}{=} \Pr{\{\mathbf{x} \leq \mathbf{x}^0\}}$$

The density function is given by

$$f_{\mathbf{x}}(\mathbf{x}) = \frac{\partial^N F_{\mathbf{x}(\mathbf{x})}}{\partial x_1 \partial x_2 \dots \partial x_N}$$

$$F_{\mathbf{x}}(\mathbf{x}^0) = \int_{-\infty}^{\mathbf{x}_1^0} \int_{-\infty}^{\mathbf{x}_2^0} \cdots \int_{-\infty}^{\mathbf{x}_N^0} f_{\mathbf{x}}(\mathbf{x}) dx_1 dx_2 \dots dx_N$$

Properties:

$$F_{\mathbf{x}}([\infty, \infty, \cdots, \infty]^T) = 1$$

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} f_{\mathbf{x}}(\mathbf{x}) d\mathbf{x} = 1$$

$$F_{\mathbf{x}}([x_1, x_2, \cdots, -\infty, \cdots, x_N]^T) = 0$$

Also

$$F([\infty, x_2, x_3, \cdots, x_N]^T) = F([x_2, x_3, \cdots, x_N]^T)$$
$$\int_{-\infty}^{\infty} f([x_1, x_2, x_3, \cdots, x_N]^T) dx_1 = f([x_2, x_3, \cdots, x_N]^T)$$

- ▶ Setting $x_i = \infty$ in the cdf eliminates this sample
- ▶ Integrating over $(-\infty, \infty)$ along x_i in the pdf eliminates this sample

Expectations & Moments

Objective: Obtain partial description of process generating x

Solution: Use moments

The first moment, or mean, is

$$\mathbf{m}_{\mathbf{x}} = E\{\mathbf{x}\} = [m_1, m_2, \dots, m_N]^T$$
$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \dots \int_{-\infty}^{\infty} \mathbf{x} f_{\mathbf{x}}(\mathbf{x}) d\mathbf{x}$$

$$\Rightarrow m_k = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} x_k f_{\mathbf{x}}(\mathbf{x}) dx_1 dx_2 \cdots dx_N$$
$$= \int_{-\infty}^{\infty} x_k \underbrace{f_{\mathbf{x}_k}(x_k)}_{} dx_k$$

 \uparrow marginal distribution of x_k

Definition (Correlation Matrix)

A complete set of second moments is given by the correlation matrix

$$\mathbf{R}_{\mathbf{x}} = E\{\mathbf{x}\mathbf{x}^{H}\} = E\{\mathbf{x}\mathbf{x}^{*T}\}\$$

$$= \begin{bmatrix} E\{|x_{1}|^{2}\} & E\{x_{1}x_{2}^{*}\} & \cdots & E\{x_{1}x_{N}^{*}\} \\ E\{x_{2}x_{1}^{*}\} & E\{|x_{2}|^{2}\} & \cdots & E\{x_{2}x_{N}^{*}\} \\ \vdots & \vdots & \ddots & \vdots \\ E\{x_{N}x_{1}^{*}\} & E\{x_{N}x_{2}^{*}\} & \cdots & E\{|x_{N}|^{2}\} \end{bmatrix}$$

Result

The correlation matrix is Hermitian symmetric

$$(\mathbf{R}_{\mathbf{x}})^{H} = (E\{\mathbf{x}\mathbf{x}^{H}\})^{H}$$
$$= E\{(\mathbf{x}\mathbf{x}^{H})^{H}\}$$
$$= E\{\mathbf{x}\mathbf{x}^{H}\} = \mathbf{R}_{\mathbf{x}}$$

Definition (Covariance Matrix)

The set of second central moments is given by the covariance

$$\mathbf{C}_{\mathbf{x}} = E\{(\mathbf{x} - \mathbf{m}_{\mathbf{x}})(\mathbf{x} - \mathbf{m}_{\mathbf{x}})^{H}\}$$

$$= E\{\mathbf{x}\mathbf{x}^{H}\} - \mathbf{m}_{\mathbf{x}}E\{x^{H}\} - E\{\mathbf{x}\}\mathbf{m}_{\mathbf{x}}^{H} + \mathbf{m}_{\mathbf{x}}\mathbf{m}_{\mathbf{x}}^{H}$$

$$= \mathbf{R}_{\mathbf{x}} - \mathbf{m}_{\mathbf{x}}\mathbf{m}_{\mathbf{x}}^{H}$$

Result

The covariance is Hermitian symmetric

$$\mathbf{C}_{\mathbf{x}} = \mathbf{C}_{\mathbf{x}}^{H}$$

Result

The correlation and covariance matrices are positive semi-definite

$$\mathbf{a}^H \mathbf{R}_{\mathbf{x}} \mathbf{a} \ge 0 \quad \mathbf{a}^H \mathbf{C}_{\mathbf{x}} \mathbf{a} \ge 0 \quad (\forall \mathbf{a})$$

To prove this, note

$$\mathbf{a}^{H}\mathbf{R}_{\mathbf{x}}\mathbf{a} = \mathbf{a}^{H}E\{\mathbf{x}\mathbf{x}^{H}\}\mathbf{a}$$

$$= E\{\mathbf{a}^{H}\mathbf{x}\mathbf{x}^{H}\mathbf{a}\}$$

$$= E\{(\mathbf{a}^{H}\mathbf{x})(\mathbf{a}^{H}\mathbf{x})^{H}\}$$

$$= E\{|\mathbf{a}^{H}\mathbf{x}|^{2}\} \ge 0$$

For most cases, R and C are positive define

$$\mathbf{a}^H \mathbf{R}_{\mathbf{x}} \mathbf{a} > 0 \quad \mathbf{a}^H \mathbf{C}_{\mathbf{x}} \mathbf{a} > 0$$

 \Rightarrow no linear dependencies in R_{x} or C_{x}

Definitions (Cross-Correlation and Cross-Covariance)

For random vectors \mathbf{x} and \mathbf{y} ,

Cross-correlation
$$\stackrel{\triangle}{=} \mathbf{R}_{\mathbf{x}\mathbf{y}} = E\{\mathbf{x}\mathbf{y}^H\}$$

Cross-covariance $\stackrel{\triangle}{=} \mathbf{C}_{\mathbf{x}\mathbf{y}} = E\{(\mathbf{x} - \mathbf{m}_{\mathbf{x}})(\mathbf{y} - \mathbf{m}_{\mathbf{y}})^H\}$
 $= \mathbf{R}_{\mathbf{x}\mathbf{y}} - \mathbf{m}_{\mathbf{x}}\mathbf{m}_{\mathbf{y}}^H$

Definition (Uncorrelated Vectors)

Two vectors \mathbf{x} and \mathbf{y} are uncorrelated if

$$\mathbf{C}_{\mathbf{x}\mathbf{y}} = \mathbf{R}_{\mathbf{x}\mathbf{y}} - \mathbf{m}_{\mathbf{x}} \mathbf{m}_{\mathbf{y}}^{H} = 0$$

or equivalently

$$\mathbf{R}_{\mathbf{x}\mathbf{v}} = E\{\mathbf{x}\mathbf{y}^H\} = \mathbf{m}_{\mathbf{x}}\mathbf{m}_{\mathbf{v}}^H$$

Note that as in the scalar case

Also, x and y are orthogonal if

$$\mathbf{R}_{\mathbf{x}\mathbf{y}} = E\{\mathbf{x}\mathbf{y}^H\} = \mathbf{0}$$

Example

Let \mathbf{x} and \mathbf{y} be the same dimension. If

$$z = x + y$$

find R_z and C_z

By definition

$$\mathbf{R_z} = E\{(\mathbf{x} + \mathbf{y})(\mathbf{x} + \mathbf{y})^H\}$$

$$= E\{\mathbf{x}\mathbf{x}^H\} + E\{\mathbf{x}\mathbf{y}^H\} + E\{\mathbf{y}\mathbf{x}^H\} + E\{\mathbf{y}\mathbf{y}^H\}$$

$$= \mathbf{R_x} + \mathbf{R_{xy}} + \mathbf{R_{yx}} + \mathbf{R_y}$$

Similarly

$$C_z = C_x + C_{xy} + C_{yx} + C_y$$

Note: If x and y are uncorrelated,

$$\mathbf{R_z} = \mathbf{R_x} + \mathbf{m_x} \mathbf{m_y}^H + \mathbf{m_y} \mathbf{m_x}^H + \mathbf{R_y}$$

and

$$C_z = C_x + C_y$$

Definition (Multivariate Gaussian Density)

For a N dimensional random vector ${\bf x}$ with covariance ${\bf C_x}$, the multivariate Gaussian pdf is

$$f_{\mathbf{x}}(\mathbf{x}) = \frac{1}{(2\pi)^{\frac{N}{2}} |\mathbf{C}_{\mathbf{x}}|^{\frac{1}{2}}} e^{-\frac{1}{2}(\mathbf{x} - \mathbf{m}_{\mathbf{x}})^{H} \mathbf{C}_{\mathbf{x}}^{-1}(\mathbf{x} - \mathbf{m}_{\mathbf{x}})}$$

Note the similarity to the univariate case

$$f_x(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2}\frac{(x-m)^2}{\sigma^2}}$$

Example

Let N=2 (bivariate case) and ${\bf x}$ be real. Then

$$\mathbf{x} = \left[egin{array}{c} x_1 \\ x_2 \end{array}
ight] \quad ext{and} \quad \mathbf{m}_{\mathbf{x}} = E\{\mathbf{x}\} = \left[egin{array}{c} m_1 \\ m_2 \end{array}
ight]$$

$$\mathbf{C}_{\mathbf{x}} = E\{(\mathbf{x} - \mathbf{m}_{\mathbf{x}})(\mathbf{x} - \mathbf{m}_{\mathbf{x}})^{T}\}
= E\{\mathbf{x}\mathbf{x}^{T}\} - \mathbf{m}_{\mathbf{x}}\mathbf{m}_{\mathbf{x}}^{T}
= E\left\{\begin{bmatrix} x_{1}^{2} & x_{1}x_{2} \\ x_{2}x_{1} & x_{2}^{2} \end{bmatrix}\right\} - \begin{bmatrix} m_{1}^{2} & m_{1}m_{2} \\ m_{2}m_{1} & m_{2}^{2} \end{bmatrix}
= \begin{bmatrix} E\{x_{1}^{2}\} - m_{1}^{2} & E\{x_{1}x_{2}\} - m_{1}m_{2} \\ E\{x_{2}x_{1}\} - m_{2}m_{1} & E\{x_{2}^{2}\} - m_{2}^{2} \end{bmatrix}$$

Recall that

$$\sigma_x^2 = E\{x^2\} - E^2\{x\}$$

and

$$r = \frac{E\{x_1 x_2\} - m_1 m_2}{\sigma_{x_1} \sigma_{x_2}}$$

Rearranging:
$$\mathbf{C_x} = \begin{bmatrix} \sigma_{x_1}^2 & r\sigma_{x_1}\sigma_{x_2} \\ r\sigma_{x_1}\sigma_{x_2} & \sigma_{x_2}^2 \end{bmatrix}$$

Also,

$$\mathbf{C_{x}}^{-1} = \frac{1}{\sigma_{x_{1}}^{2}\sigma_{x_{2}}^{2} - r^{2}\sigma_{x_{1}}^{2}\sigma_{x_{2}}^{2}} \begin{bmatrix} \sigma_{x_{2}}^{2} & -r\sigma_{x_{1}}\sigma_{x_{2}} \\ -r\sigma_{x_{1}}\sigma_{x_{2}} & \sigma_{x_{1}}^{2} \end{bmatrix}$$
$$= \frac{1}{\sigma_{x_{1}}^{2}\sigma_{x_{2}}^{2}(1-r^{2})} \begin{bmatrix} \sigma_{x_{2}}^{2} & -r\sigma_{x_{1}}\sigma_{x_{2}} \\ -r\sigma_{x_{1}}\sigma_{x_{2}} & \sigma_{x_{1}}^{2} \end{bmatrix}$$

Substituting into the Gaussian pdf and simplifying

$$f_{\mathbf{x}}(\mathbf{x}) = \frac{1}{2\pi |\mathbf{C}_{\mathbf{x}}|^{\frac{1}{2}}} e^{-\frac{1}{2}(\mathbf{x} - \mathbf{m}_{\mathbf{x}})^{T} \mathbf{C}_{\mathbf{x}}^{-1}(\mathbf{x} - \mathbf{m}_{\mathbf{x}})}$$

$$= \frac{1}{2\pi \sigma_{x_{1}} \sigma_{x_{2}} (1 - r^{2})^{\frac{1}{2}}} e^{-\frac{1}{2(1 - r^{2})} \left[\frac{(x_{1} - m_{1})^{2}}{\sigma_{x_{1}}^{2}} - 2r \frac{(x_{1} - m_{1})(x_{2} - m_{2})}{\sigma_{x_{1}} \sigma_{x_{2}}} + \frac{(x_{2} - m_{2})^{2}}{\sigma_{x_{2}}^{2}} \right]}$$

Note: If uncorrelated, r = 0

$$\Rightarrow f_{\mathbf{x}}(\mathbf{x}) = \frac{1}{2\pi\sigma_{x_1}\sigma_{x_2}} e^{-\frac{1}{2}\left[\frac{(x_1 - m_1)^2}{\sigma_{x_1}^2} + \frac{(x_2 - m_2)^2}{\sigma_{x_2}^2}\right]} \\ = f_{x_1}(x_1) f_{x_2}(x_2)$$

Gaussian special case result:

uncorrelated \Rightarrow independent

Example

Examine the contours defined by

$$(\mathbf{x} - \mathbf{m_x})^T \mathbf{C_x}^{-1} (\mathbf{x} - \mathbf{m_x}) = \text{constant}$$

Why? For all values on the contour

$$f_{\mathbf{x}}(\mathbf{x}) = \text{constant}$$

$$r = 0 \quad \sigma_{x_1} = \sigma_{x_2}$$

$$r = 0 \quad \sigma_{x_1} > \sigma_{x_2}$$

$$r > 0$$
 $\sigma_{x_1} > \sigma_{x_2}$

$$r > 0 \quad \sigma_{x_1} < \sigma_{x_2}$$

r < 0 and $\sigma_{x_1} > \sigma_{x_2}$

- ▶ Integrating over x_2 yields $f_{x_1}(x_1)$
- ▶ Integrating over x_1 yields $f_{x_2}(x_2)$

Additional Gaussian (surface) examples:

Tchebycheff Inequality

For any $\epsilon > 0$,

$$\Pr(|x - \eta| \ge \epsilon) \le \frac{\sigma^2}{\epsilon^2}$$

To prove this, note

$$\Pr(|x - \eta| \ge \epsilon) = \int_{-\infty}^{\eta - \epsilon} f(x) dx + \int_{\eta + \epsilon}^{\infty} f(x) dx$$
$$= \int_{|x - \eta| \ge \epsilon} f(x) dx$$

Also note that

$$\sigma^{2} = \int_{-\infty}^{\infty} (x - \eta)^{2} f(x) dx$$

$$\geq \int_{|x - \eta| \ge \epsilon} (x - \eta)^{2} f(x) dx$$

$$\sigma^2 \ge \int_{|x-\eta| \ge \epsilon} (x-\eta)^2 f(x) dx$$

Using the fact that $|x - \eta| \ge \epsilon$ in the above gives

$$\sigma^{2} \geq \epsilon^{2} \int_{|x-\eta| \geq \epsilon} f(x)dx$$
$$= \epsilon^{2} \Pr\{|x-\eta| \geq \epsilon\}$$

Rearranging gives the desired result

$$\Rightarrow \Pr\{|x - \eta| \ge \epsilon\} \le \left(\frac{\sigma}{\epsilon}\right)^2$$

QED

Markov's Inequality

If x is a non-negative RV, then for all a > 0

$$\Pr\{x \ge a\} \le \frac{E\{x\}}{a}.$$

Proof:

$$\Pr\{x \ge a\} = \int_a^\infty f(x)dx$$

$$\le \int_a^\infty \frac{x}{a} f(x)dx \quad \text{since } x \ge a$$

$$\le \frac{1}{a} \int_0^\infty x f(x)dx$$

$$= \frac{E\{x\}}{a}.$$

Chernoff's Bounding Method

Let x be a RV on \mathbb{R} . Then for all $\epsilon > 0$

$$\Pr\{x \ge \epsilon\} \le \min_{s>0} \quad e^{-s\epsilon} E\{e^{sx}\}.$$

To prove this for any s > 0:

$$\Pr\{x \ge \epsilon\} = \Pr\{sx \ge s\epsilon\}$$

$$= \Pr\{e^{sx} \ge e^{s\epsilon}\}$$

Using Markov's Inequality:

$$\Pr\{x \ge \epsilon\} = \Pr\{e^{sx} \ge e^{s\epsilon}\} \le \frac{E\{e^{sx}\}}{e^{s\epsilon}}$$
$$= e^{-s\epsilon}E\{e^{sx}\}.$$

Consider $S_N = \sum_{i=1}^N x_i$ where $x_1,...,x_N$ are independent RV's on $\mathbb R$ such that $a_i \le x_i \le b_i$. Then, for any $\epsilon > 0$

$$\Pr\{|S_N - E\{S_N\}| \ge \epsilon\} \le 2e^{-2\epsilon^2/\sum(b_i - a_i)^2}$$

Proof:

First, demonstrate that if $E\{x\} = 0$ then $E\{e^{sx}\} \le e^{s^2(b-a)^2/8}$ for any s > 0. If $x \in [a,b]$ then the convexity of the function $f(x) = e^{sx}$ implies that

$$\begin{array}{lcl} e^{sx} & \leq & \alpha f(b) + (1-\alpha)f(a), \\ e^{sx} & \leq & \alpha e^{sb} + (1-\alpha)e^{sa}, \text{ since } \alpha = \frac{x-a}{b-a}, \\ e^{sx} & \leq & \frac{x-a}{b-a}e^{sb} + \frac{b-x}{b-a}e^{sa} \end{array}$$

$$e^{sx} \le \frac{x-a}{b-a}e^{sb} + \frac{b-x}{b-a}e^{sa}$$

Using the fact that $E\{x\} = 0$ we obtain:

$$\begin{split} E\{e^{sx}\} & \leq \frac{b}{b-a}e^{sa} - \frac{a}{b-a}e^{sb}, \\ & = e^{sa}\left(\frac{b}{b-a} - \frac{a}{b-a}e^{s(b-a)}\right), \text{ since } y = e^{\ln(y)} \\ & = e^{\ln\left[e^{sa}\left(\frac{b-ae^{s(b-a)}}{b-a}\right)\right]} \end{split}$$

Thus,

$$E\{e^{sx}\} \leq e^{g(s)}$$
 where $g(s) = sa + \ln(b - ae^{s(b-a)}) - \ln(b-a)$

$$g(s) = sa + \ln(b - ae^{s(b-a)}) - \ln(b-a)$$

By Taylor's theorem:

$$g(s) = g(0) + g'(0)s + \frac{1}{2!}g''(\xi)s^2, \quad 0 \le \xi \le s$$

$$g(0) = 0,$$
 $g'(0) = 0,$ $g''(\xi) \le \frac{(b-a)^2}{4}$

Substituting, we get: $g(s) \le \frac{s^2(b-a)^2}{8}$.

Substituting in previous demonstration (i.e. $E\{e^{sx}\} \le e^{g(s)}$):

$$\Longrightarrow \boxed{E\{e^{sx}\} \le e^{s^2(b-a)^2/8}} \quad (*)$$

Second, apply Chernoff's bounding method i.e.:

$$\Pr\{x \ge \epsilon\} \le \min_{s>0} e^{-s\epsilon} E\{e^{sx}\}$$

to the random variable: $S_N - E\{S_N\}$,

$$\Pr\{S_N - E\{S_N\} \ge \epsilon\} \le \min_{s>0} e^{-s\epsilon} E\left\{e^{s(S_N - E\{S_N\})}\right\}$$

$$\le \min_{s>0} e^{-s\epsilon} E\left\{e^{s\left(\sum_{i=1}^N (x_i - E\{x_i\})\right)}\right\}$$

since the x_i are independent

$$\leq \min_{s>0} e^{-s\epsilon} \prod_{i=1}^{N} E\{e^{s(x_i - E\{x_i\})}\}$$

Applying our first result (*) to $y_i = x_i - E\{x_i\}$ where $E\{y_i\} = 0$:

$$E\{e^{s(x_i - E\{x_i\})}\} \le e^{s^2(b_i - a_i)^2/8}$$

Substitute $E\{e^{s(x_i-E\{x_i\})}\} \le e^{s^2(b_i-a_i)^2/8}$ in the previous Chernoff's bound:

$$\Pr\{S_N - E\{S_N\} \ge \epsilon\} \le \min_{s>0} e^{-s\epsilon} \prod_{i=1}^N E\{e^{s(x_i - E\{x_i\})}\}$$

we get:

$$\Pr\{S_N - E\{S_N\} \ge \epsilon\} \le \min_{s>0} e^{-s\epsilon} \prod_{i=1}^N e^{s^2(b_i - a_i)^2/8}$$
$$= \min_{s>0} e^{-s\epsilon + \sum_{i=1}^N (s^2/8)(b_i - a_i)^2}$$

It can be shown that the minimum is at $s = 4\epsilon / \sum (b_i - a_i)^2$.

$$\Pr\{S_N - E\{S_N\} \ge \epsilon\} \le e^{-s\epsilon + \sum_{i=1}^N (s^2/8)(b_i - a_i)^2}$$

Substituting the minimum $(s = 4\epsilon/\sum_{i=1}^{N} (b_i - a_i)^2)$:

$$\Pr\{S_N - E\{S_N\} \ge \epsilon\} \le e^{-2\epsilon^2/\sum_{i=1}^N (b_i - a_i)^2}$$

If we consider $-x_1, ..., -x_N$ instead, we obtain:

$$\Pr\{S_N - E\{S_N\} \le -\epsilon\} \le e^{-2\epsilon^2/\sum_{i=1}^N (b_i - a_i)^2}$$

By combining the two bounds, we finish the proof:

$$\Pr\{|S_N - E\{S_N\}| \ge \epsilon\} \le 2e^{-2\epsilon^2/\sum_{i=1}^N (b_i - a_i)^2}$$

Example:

Find the Hoeffding's Inequality of a random variable $x_i \stackrel{\text{i.i.d.}}{\sim} \text{Ber}(p)$.

Solution:

Consider the Hoeffding's Inequality:

$$\Pr\{|S_N - E\{S_N\}| \ge \epsilon\} \le 2e^{-2\epsilon^2/\sum_{i=1}^N (b_i - a_i)^2}$$

Since $x_i \sim \text{Ber}(p)$, then $a_i = 0$, $b_i = 1$, $S_N = \sum_{i=1}^N x_i \sim Bin(N,p)$, and $E\{S_N\} = Np$. Taking $\epsilon = N\delta$ and applying Hoeffding's Inequality:

$$\Pr\left\{\left|\sum_{i=1}^{N} x_i - Np\right| \ge N\delta\right\} \le 2e^{-2(N\delta)^2/\sum_{i=1}^{N} (1-0)^2}$$

$$\Pr\left\{\left|\frac{1}{N}\sum_{i=1}^{N} x_i - p\right| \ge \delta\right\} \le 2e^{-2N\delta^2}$$

$$\Pr\left\{\left|\frac{1}{N}\sum_{i=1}^{N}x_{i}-p\right| \geq \delta\right\} \leq 2e^{-2N\delta^{2}}$$

$$\Pr\left\{\left|\nu-\mu\right| \geq \delta\right\} \leq 2e^{-2N\delta^{2}}$$

