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Component Analysis (PCA) and Matrix Completition

The Learning Problem

Training vs Testing

The Linear Model

Overfitting and Regularization (Ridge Regression)
Lasso Regression

Suport Vector Machines (SVM)

Neural Networks

© 0N ook w
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Random Variables

Definition

For a space S, the subsets, or events of .S, have associated probabilities.
> To every event 0, we assign a number x(d), which is called a R.V.
» The distribution function of x is

Pr{z <z} = Fy(xg) —o00<zp<0
Properties:

1. F(+oo)=1, F(—00)=0

2. F(z) is continuous from the right

3. Pr{z; <2z <z} = F(x2) — F(x1)
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Example
Fair toss of two coins: H=heads, T=Tails

Define numerical assignments:

Events(d) | Prob. | X(6) | Y(9)
HH 1/4 1 |-100
HT 1/4 2 | -100
TH 1/4 3 |-100
TT 1/4 4 | 500

This assignments yield different distribution functions

Fy(2) = Pr{HH HT}
F,(2) = Pr{HH HT TH}

How do we attain an intuitive interpretation of the distribution function?



Probability ARE FSAN/ELEG815

Distribution Plots

F,(x)

F.(»)
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]
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Note propo)ertie:s hold:
1. F(+00) =1, F(—00)=0
2. F(x) is continuous from the right

3. Pr{z; <z <9} = F(x2) — F(z1)
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Definition
The probability density function is defined as,
_dF()
or F(x)= /w f(z)dz
—00

Thus F(oo):1:>/_o:of(x)da::1

Types of distributions:
» Continuous: Pr{z =20} =0 Vazg
» Discrete: F(x;)—F(x;)=Pr{x =x;} =P,
» In which case f(z) =), P;0(z —x;)
» Mixed: discontinuous but not discrete
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Distribution examples

Uniform: = ~U(a,b) a<b

f(x)

S
|
S
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Gaussian: z ~ N(u,0)

f(x) F(x)
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Probability

Gaussian Distribution Example

Example
Consider the Normal (Gaussian) distribution PDF and CDF for
pw=0,02=0.2,1.0,5.0 and p= 2,02 =0.5
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Binomial: x ~ B(p,q) p+q=1
Example
Toss a coin n times. What is the probability of getting k heads?

For p+4q =1, where g is probability of a tail, and p is the probability of a
head:

Priz=k} = @pkqn * [NOTE;(Z):M]

n

= flx) = Y <Z>pkq"k5($—k)

k=0

m
= F(z) = Z()k”k m<x<m-+1
k=0
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Binomial Distribution Example |

Example
Toss a coin n times. What is the probability of getting k heads? For
n=9,p=q= % (fair coin)

0.3
1lx)
. o .| F(x)
0.2
* *
0.5 4
0.1
> *
*
0 T O 0

o 1 2 3 4 5 6 7 8 9 10 o 1 2 3 4 5 6 7 8 9 10 M
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Binomial Distribution Example Il

Example

Toss a coin n times. What is the probability of getting k heads? For
n=20,p=0.5,0.7 and n =40,p = 0.5.

9 ] o
e * p=0.5 and n=20
= p=0.7 and n=20

&  p=0.5 and n=40 @

S s
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<4 ©
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2] <
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0

S o

= S
~ p=0.5 and n=20
= p=0.7 and n=20

o - . o= -

S ssssises Seee®  *..ls ®cecscecseses o p=0.5and n=40

= S

T T T T T
0 10 20 30 40 0 10 20 30 40



Probability ARE FSAN/ELEG815

Conditional Distributions

Definition
The conditional distribution of x given event “M" has occurred is

Fip(xo|M) = Pr{z <zo|M}

_ Pr{z <9, M}
n Pr{M}
Example
Suppose M = {z < a}, then
Pr{z <zo,M}
Felao| M) = Pr{z <a}

If o > a, what happens?
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Special Cases

Special Case: 2o > a
Pr{z <xp,z <a} =Pr{z <a}

Pr{iz <xg, M} Pr{z<a}
Pr{izr<a}  Pr{z<a}

= Fyp(zo|M) =

Special Case: zp <a

Pr{iz <xo, M} Pr{z <o}
Pr{ir<a}  Pr{z<a}

Fm(xO)

Fy(a)

= Fp(xg|M) =
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Conditional Distribution Example

Example
Suppose

F(x)

FSAN/ELEG815

a

What does F, (x| M) look like? Note M = {x < a}.

Fx(ﬂﬁo)
= (20| M) = { 1Fm(a) t i a
a<zx
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Probability

F(x)
1

F(fx<a) ﬁ
S SEw

a

» Distribution properties hold for conditional cases:

» Limiting cases: F'(co|M) =1 and F'(—oo|M) =0
> Probability range: Pr{zo <z <x1|M} = F(x1|M)— F(xo|M)

» Density—distribution relations:

f(alar) = D

FaolM) = [ Zf(wlM)dw
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Example (Fair Coin Toss)
Toss a fair coin 4 times. Let = be the number of heads. Determine Pr{z = k}.

Recall

Pr{iz =k} = (Z)pkq”_k

vn - ()0

Pr{m = 0} = Pr{:p = 4} —

In this case

i

Pr{r =1} = Pr{z=3}=

Prir=2) =
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Density and Distribution Plots for Fair Coin (n =4) Ex.

05
fx) F(x) 15 !
04 ! 16
. % 1
03 16
o+l ol
02 4 1 05
16
0.4 1
s L oL 16
16 16
0 0
0 1 2 3 4 5 0 1 2 3 4 5 6 7

What type of distribution is this? Discrete. Thus,

F(x;))—F(z;)=Pr{x =2;} = P

F(z)= /_xoof(x)dx = /_xmz:]%é(x—mi)dx
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Conditional Case

Example (Conditional Fair Coin Toss)

Toss a fair coin 4 times. Let x be the number of heads. Suppose
M = |at least one flip produces a head]. Determine Pr{x = k|M}.
Recall,

Pr{x =k, M}

Priv = KM} = =5 0

Thus first determine Pr{M}

Pr{M} = 1—Pr{No heads}

1
- 1-—
16

15

16
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Next determine Pr{x = k|M} for the individual cases, kK =0,1,2,3,4

Priz = 0|M} — Pr{gr{:j&}f\ﬂ:o
Priz=1|M} = W

Pr{z=1} 1/4 4

Pr{M} — 15/16 15
Pr{zr=2} 3/8 6

Pr{z=2|M} = - =
v =2|M} Pr{M} _ 15/16 15
4
Pr{x =3|M} = G

1
Pr{z—4M} — —
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Conditional and Unconditional Density Functions

os 05
’ Ax\M)
fix) 0.4 kS s
04 i 15
3
8
03 03 4 .
* s * s
o+l ol 0
0.2 4 4 ’
0.1
0.4 1
s ! o s
1 1 5
. 16 16 o
1 2 4
0 1 2 3 4 5 0 3 5

Are they proper density functions?
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Functions of a RV,

Problem Statement
Let x and g(x) be RVs such that

y=g(r)
Question: How do we determine the distribution of y?
Note
Fy(yo) = Pr{y<wo}
= Pr{g(z) <o}
where

Ry, ={r:g(z) <yo}
Question: If y = g(z) = 22, what is Ry, 7
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Example
Let y = g(x) = 22. Determine F,(yo).

FSAN/ELEG815

Note that
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Example
Let x ~ N(p,0) and

£

£

S
~
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General Function of a Random Variable Case

Additional Notes

To determine the density of y = g(z) in terms of f.(zg), look at g(x)

~Y

fy(yo)dyo = Pr(yo <y <yo+dyo)
= Pr(x; <z <xi+dzr))+Pr(ze+dry <z < x9)
+Pr(zs <z <z3+dxs)
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Additional Notes
fy(yo)dyo = Pr(zy <z <xy+dxr)+Pr(zg+dry <x < x9)
+Pr(zs <x <z3+dzs)
= fo(x1)dry+ fo(xe)|dra| + fu(x3)dxs (%)

Note that
doy — dxy du — dyo dyo
d dyo/dr1  g'(21)
Similarly ; p
Yo _a¥Yo
2= g (z2) and - dirs = g'(z3)
Thus (*) becomes
_ fal(z) fa(22) Jo(23)
fy(yo)dyo = 7o) dyo + (@) Yo + o (z3)
or
_ fa(@) | felz2) | ful(3)
B wo) =50y T gl T 7 s)
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Function of a R.V. Distribution General Result
Set y = g(x) and let z1,z2,... be the roots, i.e.,

y=g(x1) =g(z2) =

Then Folar) | folan)
_ Jz\T1 z\ T2
W) = g Mgl T

Example
Suppose z ~ U(—1,2) and y = x2. Determine f,(y).

f(x) y
L2

FSAN/ELEG815
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Note that
gw) =% = (2) = 20

Consider special cases separately:
Case 1: 0<y <1

y:zz:m:i\/ﬂ

fe(21) N fr(z2)

W) = el T )
_ Y3 1313
2vyl 1=2vyl VY
Case 2: 1<y <4
y:x2:>ac:\/§
faom)  1/3 1/6
fy(y) |g’($1)]_2\/§_\/§
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Result: For x ~ U(—1,2) and y = 22

£.(x) y
L2
1 1
3
| |
-1 1 2 -1 0 1 2
f:(»
1/3
=2 <y <1
W=y 16,y
\/:lj -~




Probability

Example
Let © ~ N(u,0) and y = e®. Determine f,(y).
Note g(z) >0 and ¢'(z) = €*

Also, there is a single root (inverse solution):
z =In(y)

Therefore,

_ fa(2) _ fo(2)
lg'(x)] e

fy(y)

Expressing this in terms of y through substitution yields:

FSAN/ELEG815
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Note that z is Gaussian:

1 (z—p)?
fx(gj)— e 202
2o
) 1 ,(ln<y)5u)2 ‘ 0
= =———¢ 222 ., fory>
y\Y V2myo Y
1.
.
0.5 1
y
0 T T T
0 1 2 3 4 5

Log normal density
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Mean, Median and variance

Definitions
Mean FE{z} = /Oo xf(z)dx
Conditional Mean E{z|M} = /OO xf (x| M)dz
Example

Suppose M = {z >a}. Then

E{e|M} = /O:Oxf(x|M)dx
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For a function of a RV, y = g(x),
By = [ uhydy= [ g(@)fw)da

Example
Suppose g(z) is a step function: Determine E{g(x)}.

B{gl)t = [ gl)ful)dz= [ fu(w)de = Fu(awo)
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Median

Definitions

Example

Let x ~ Aexp ** U(z). Then m = ln/(\Q

Median= m /_m f(z)dx

1
09
08
07
06
05
04
03
02
o1

0

Median

Pr{z <m}

—

FSAN/ELEGS81

|7 e =

m

Pr{z >m}

e
=41

0

)
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Definition (Variance)
Variance 02:/_ (x—n)?f(z)dx

where n = E{x}. Thus,
0? = E{(x—n)*} = B{a*} - B*{x}

Example
For x ~ N(n,0?), determine the variance.

@) = e T

xrT) = —¢€ 20
2ro

Note: f(x) is symmetric about x =n= E{z} =1

Also
_(a—n)?

/ f(.'L')dx =1 :>/ e 202 dl‘ = 2m0
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)2

oo _(z=n
/ e 202 dx =270

Differentiating w.r.t. o:

o (x—n)? _@z-—n?
:,/ (w—m)® L= o

—00 O'3

Rearranging yields

or



Probability ARE FSAN/ELEG815

Bivariate Statistics
Given two RVs, x and y, the bivariate (joint) distribution is given by

F(z0,y0) = Pr{z <20,y < yo}

Yo

v

Properties:
> F(—o0,y)=F(xr,—0) =
» F(oo0,00) =1
> Fm(x):F($7OO)> Fy(y):F(OO,y)
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Special Cases

Case 1M ={x; <z <x2,y <yo} B

= Pr{M} = F(x2,y0) — F(x1,y0)

Case 22M = {x < p,y1 Sy <y} LK

= Pr{M} = F(zo,y2) — F(z0,y1)
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Case 3: M ={z1 <z <uz2,y1 <y <y} Then

2y

Y2

Y1

xV

X1 X2

and
Pr{M} = F(x2,y2) — F(x1,y2) — F(z2,y1) + F(z1,11)
1

Added back because this region was subtracted twice
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Definition (Joint Statistics)

O?F (x,y)

flz,y) = 920y

and

Flay) = [ [ fa.fdads
In general, for some region M, the joint statistics are
Pr{(e,y) € M} = [ [ f(x,y)drdy
Marginal Statistics: Fj(z) = F(x,00) and]\j?y(y) = F(00,y)
= folo) = [ fydy
= fyly) = /_O:Of(x,y)dx



Probability ARE FSAN/ELEG815

Independence

Definition (Independence)

Two RVs x and y are statistically independent if for arbitrary events (regions)
re€Aandy€e B,

Pr{z € A,y € B} =Pr{z € A}Pr{y € B}

Letting A ={z <0} and B ={y <o}, we see x and y are independent iff

and by differentiation

fm,y(xay) - fx(x)fy(y)
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Joint Moments

For RVs = and y and function z = g(z,y)

E{z} = /_O:Ozfz(z)dz
E{g(z,y)} = /_O:O/_O:Og(w,wf(%y)dxdy

Definition (Covariance)
For RVs x and v,

Oxy - x>y)
[ 77 )(y —ny)]
[zy] = 12 Ely] = ny Elx] +n2ny

[1’ y] 773:7721

I
E%/\

I
&&= Q
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Definition (Correlation Coefficient)

The correlation coefficient is given by

Note that

0 < FE{lalz—n)+y—n)*}
= E{(z—n)*}a® +2E{(x —n.)(y —ny) }a+ E{(y —n,)*}
= a§a2+20{pya—l—0§

This is a positive quadratic function of a
= Roots are imaginary and discriminant is non-positive

VAC%, — 40202 — imaginary

:>4C£y—4a§a§ < 0
iCﬁy < 0'32:

2
Ty
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Thus,

C
|Cay| < 0goy and |r|= m <1

Definition (Uncorrelated)

Two RVs are uncorrelated if their covariance is zero

Cry = 0
=>r = Cay =0
040y
E{ry} — E{x} E{y} _

0

010y
= E{zy} = E{z}E{y}
Thus
Cavy =0« E{l‘y} = E{.T}E{y}
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Result
If  and y are independent, then

E{zy} = E{z} E{y}

and = and y are uncorrelated
Note: Converse is not true (in general)
» Converse only holds for Gaussian RVs
» Independence is a stronger condition than uncorrelated

Definition (Orthogonality)

Two RVs are orthogonal if
E{xy} =0

Note: If = and y are correlated, they are not orthogonal
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Example

Consider the correlation between two RV's, x and y, with samples shown in a
scatter plot

1.0 0.8 -0.8 -1.0
1.0 1.0 1.0 0.0 ~150 =1.0 ~1:0

- -
e R e R N
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Sequences and Vectors of Random Variables

Definition (Vector Distribution)
Let {x} be a sequence of RVs. Take N samples to form the random vector

X = [(Tl,xz,..‘,l’N]T

Then the vector distribution function is
FX(XO) Pr{z; Sx?,xggmg,...,x]vgm%,}

2 Pr{x < x"}
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Probability

T Trl
x2 . Tr2
TN TrN

The distribution in the complex case is defined as

Fe(x?) = Pr{x, <x¥x; <xV}
2 Pr{x <x"}
The density function is given by
N Fyx)
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Properties:
Fx([oo,00,-++,00]") = 1
oL Loin =
Fy([x1,29, - ,—00,---,an]T) = 0
Also
F([oo,xa,23,---,an]T) = F([z2,23,--,2n5]T)
[ ferasase anTdn = f(azas on]”)

» Setting x; = 0o in the cdf eliminates this sample

» Integrating over (—00,00) along x; in the pdf eliminates this sample
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Expectations & Moments

Objective: Obtain partial description of process generating x
Solution: Use moments
The first moment, or mean, is

my = F{x} = [m,ma,. T

P e

=>mp = /_O:o/_o:o---/_o:oxk-fx<x)d$1d$2---dl‘]\r
= /_O:Ofl?kfa:k(fﬂk)dﬂﬂk

——
1} marginal distribution of zy,
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Definition (Correlation Matrix)

A complete set of second moments is given by the correlation matrix

R, = E{xx/}= E{XX*T}

B{le1’} Elziad) - E{airk)
| Blewt) E{nl) - Blaary)
Elenat}) Elanzs) - E{anl’}

Result
The correlation matrix is Hermitian symmetric

R = (E{xx"})"
= B{(xx")"}
= E{xx"} =Ry
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Definition (Covariance Matrix)

The set of second central moments is given by the covariance

Cx = BE{(x—my)(x—my)"}
= BE{xx} —myE{z"} — E{x}m, " + m,m, "

= Rx - mxmxH

Result
The covariance is Hermitian symmetric

C,=C,H
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Result
The correlation and covariance matrices are positive semi-definite

alRya>0 af’Cya>0 (Va)

To prove this, note

afRya = al’E{xx"}a
— FE{a’xxfa}
— B{(ax)(allx)"}
~ B{lalx?} >0

For most cases, R and C are positive define
alRya>0 af'Cya>0

= no linear dependencies in Ry or Cy



Probability ARE FSAN/ELEG815

Definitions (Cross-Correlation and Cross-Covariance)

For random vectors x and y,

. A
Cross-correlation = Ry, = E{xy'’}

Cross-covariance 2 Cxy = E{(x—my)(y—my)7}
H

Ryy —mymy

Definition (Uncorrelated Vectors)

Two vectors x and y are uncorrelated if
H
Cxy = Rxy —mxmy™ =0

or equivalently

Ryy = E{xy} = mymy”
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Note that as in the scalar case

independence = uncorrelated

uncorrelated = independence
Also, x and y are orthogonal if
Ryy = E{xy} =0
Example
Let x and y be the same dimension. If
Z=X+Yy
find R, and C,



Probability ARE FSAN/ELEGS15

By definition

R, = B{(x+y)(x+y)"}
= B{xx"}+B{xy"}+ E{yx"} + E{yy"}

Similarly
C,=Cx+Cxy +Cyx +Cy

Note: If x and y are uncorrelated,
R,=Rx+ mxmyH + mymxH +Ry

and
C,=Cx+GCy
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Definition (Multivariate Gaussian Density)

For a N dimensional random vector x with covariance Cy, the multivariate

Gaussian pdf is

1

x(X)=—F—7
) (2m) 2 |Cx[2

Note the similarity to the univariate case

r—m 2
1 _%Q

folr) = e ®

2o

Example
Let NV =2 (bivariate case) and x be real. Then

T2 ma2

6—%(x—mx)HCx_1 (x—mx)

|
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Cx = E{(x—my)(x— mX)T}

E{xx"} —mym,”

{[ :E% T1X9 1} [ m% mims ]
= F 2 - 2
Tox1  TH mami My
_ E{at} —mi E{x1z2} —mime
| E{xzoxr1} —mamy E{x3} —m}
Recall that
o2 = E{a*} — B*{x}

and
r— E{l’lxz} —mimso

0-1;10-$2
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2
. o T3, O
Rearranging: Cyx = 71 G
702, Oy Oy
Also,
2
c.-1 _ 1 Try TOz Oz,
x 2 52 2,2 52 | —r 2
031039 — 770,024 Ox101 Oz
2
B 1 T2y 7"05310162
02,02, (1—=r2) | —1r0s0u, 03,
Substituting into the Gaussian pdf and simplifying
_ 1 —%(x—mx)Tfol(x—mx)
fx(x) = —e
21| Cx|2
1 (r1-m1)? o, (#1-m1)(zg—mg)  (wg—mg)?
1 2(1—7‘2) |: o3, 2r 0xq0x9 + 0-%2

= 1 (&
2m0y, 05, (1 —12)2
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Note: If uncorrelated, r =0

S A0 = giee A R

2W0$10w2
= fur(21) fap(22)

Gaussian special case result:

uncorrelated = independent

Example
Examine the contours defined by

(x —my)TCx 7 (x — my) = constant
Why? For all values on the contour

fx(x) = constant
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r>0

r>0

Oz = Oy

Opy > Oz,

Oy > Oy

Oz < Oy

FSAN/ELEG815




Probability

r<0 and oy >0y,

X1

> Integrating over z3 yields f (x1)
> Integrating over x; yields fy,(x2)

X1

£, (%)

FSAN/ELEG815
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Additional Gaussian (surface) examples:
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Tchebycheff Inequality

For any € > 0,
o2
Pr(le—nl> ) <%
To prove this, note
n—e %)
Pr(lz —n|>¢€) = f(x)dz + ) f(x)dx
—00 n+e
= f(z)dz

Also note that

= [ -l

fix)




Probability

’> [ (r-n)?fla)de

|[z—n|>e

Using the fact that |z —n| > € in the above gives

o2 > € / f(z)dz
|z—n|=e
— Peffr—y| = )

Rearranging gives the desired result
o\ 2
= Pr{lo—nl= < (%)
€

QED

FSAN/ELEG815
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Markov's Inequality

If z is a non-negative RV, then for all a >0

E{ﬂf}

Pr{z >a} < ——

Proof:

[0.9]

Pr{z >a} = f(z)dx

IA

/OO §f(:z;)dx since x > a

a

VAN
\
o\
8
S
g
=
QL
S
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Chernoff’'s Bounding Method

Let z be a RV on R. Then for all e >0

Pr{z > ¢} < m>1(r)1 e *E{e’}.

To prove this for any s > 0:
Pr{z > e} = Pr{sz> se}
= Pr{e®" >¢*}
Using Markov's Inequality:

¢ Eie™}
Pr{z > e} =Pr{e® > ¢’} < T

= e *“E{e*}.
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Hoeffding's Inequality

Consider Sy = Zi\;l x; where x1,...,xn are independent RV's on R such that
a; < x; <b;. Then, for any € >0

Pr{|Sy — E{Sy}| > ¢} < 2¢72¢/X(i—a)’

Proof:

First, demonstrate that if E{z} =0 then E{e*"} < es” (=a)*/8 for any s > 0.
If € [a,b] then the convexity of the function

f(z) = e** implies that e

e’ < af(b)+(1—a)f(a), af(b>+(1fa)f(a_
T < ae+(1—a)e®, since a= ?)::Z’

e < mesb n b— xesa

b—a b—a
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Hoeffding's Inequality

Tr—a b—=x
GSb

ST < sa
<= b—a + b—ae
Using the fact that E{z} = 0 we obtain:
b a
E{es® < sa sb
{e) = b—a® b—a’
b
= e (b— . bfaes(b_a)> , since y = )

Thus,
E{e*} < e9(s)

where g(s) = sa+1In(b—ae’®=) —In(b—a).
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Hoeffding's Inequality

g(s) = sa+In(b—ae*®=) —In(b—a)

By Taylor's theorem:

o(5) = 9(0) +4/O)s+ g (€), 0<€<s

o . 32(b—a)2
Substituting, we get:  g(s) < —-—g—.

Substituting in previous demonstration (i.e. E{e**} < e9(9))

— E{esx}<e b—a)®/8 (%)
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Hoeffding's Inequality
Second, apply Chernoff’s bounding method i.e.:

Pr{z > ¢} <mingsg e *“E{e’})
to the random variable: Sy — E{Sn},

Pr{Sy —E{Sn}>¢} < min e_seE{eS(SN_E{SN})}

s>0
< min e *F es<zi\;1(mi_E{xi})>
- s>0
N
since the x; are independent < min e *¢ H E{es(“’i_E{xi})}
s>0

i=1

Applying our first result (x) to y; = x; — E{x;} where E{y;} =0:

E{es(wi—E{xi})} < 632(bi—ai)2/8
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Hoeffding's Inequality

Substitute E{es(@—F{mih)} < ¢5*(i=a:)*/8 i the previous Chernoff's bound:

N
PriSy —E{Sn}>¢} < min e [[ E{e*®iFleih}
s i=1

we get:
N 2 b 2 ]
Pr{Sny —E{Sn}>¢} < m>161 eI e (bi—ai)*/
5 i=1

N
— min 6_56“‘2@':1(52/8)(1%‘—%)2
s>0

It can be shown that the minimum is at s = 4¢/ > (b; — a;)>.
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Hoeffding's Inequality

Pr{Sy — E{Sn} > €} < e 5+ Lita (5°/8) (bi—ai)?
Substituting the minimum (s = 4¢/ >N (b; — a;)?):

Pr{Sy — E{Sx} > ¢} < e 2/Elilbima)’
If we consider —x1,...,—x instead, we obtain:

Pr{Sy — B{Sy} < —¢} < e 2/ Lili(bima)’®
By combining the two bounds, we finish the proof:

Pr{|Sy — E{Sy}| = ¢} < 2¢72/Ti (i)’
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Hoeffding's Inequality
Example:
Find the Hoeffding's Inequality of a random variable z; '~ Ber(p).

Solution:
Consider the Hoeffding's Inequality:

Pr{lSy —E{Sn}| > ¢} < 9e—26¢%/ il (bi—ai)®

Since x; ~ Ber(p), then a; =0, b; =1, Sy = Zi]\il x; ~ Bin(N,p), and
E{Sn} = Np. Taking e = N¢ and applying Hoeffding's Inequality:

N
Pr{

> x;—Np

zNé} < 9e 28/ 3L, (1-0)°

sz

2
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Hoeffding's Inequality

Plly — pl >4

Pr

3
LS
Nizl Z

Prilv—p|>6) < 22N

|

26} < 2672]\752

—$=0.02 -
—0=0.05 -
5=0.1
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